Cálculo del coeficiente de correlación

Cálculo del coeficiente de correlación

Hay muchas preguntas que hacer al mirar un diagrama de dispersión. uno de los más comunes es ¿qué tan bien se aproxima una línea recta a los datos? Para ayudar a responder esto, hay una estadística descriptiva llamada coeficiente de correlación. veremos cómo calcular esta estadística.

el coeficiente de correlación

El coeficiente de correlación , denotado por r, nos dice cuán cerca están los datos en un diagrama de dispersión a lo largo de una línea recta.

cuanto más cercano es el valor absoluto de r a uno, mejor se describen los datos mediante una ecuación lineal. si r = 1 o r = -1, entonces el conjunto de datos está perfectamente alineado. Los conjuntos de datos con valores de r cercanos a cero muestran poca o ninguna relación en línea recta.

Debido a los largos cálculos, es mejor calcular r con el uso de una calculadora o software estadístico. sin embargo, siempre vale la pena saber qué hace su calculadora cuando está calculando. Lo que sigue es un proceso para calcular el coeficiente de correlación principalmente a mano, con una calculadora utilizada para los pasos aritméticos de rutina.

pasos para calcular r

Comenzaremos enumerando los pasos para el cálculo del coeficiente de correlación. Los datos con los que estamos trabajando son datos emparejados , cada par de los cuales se denotará por ( x i , y i ).

  1. Comenzamos con algunos cálculos preliminares. Las cantidades de estos cálculos se utilizarán en los pasos posteriores de nuestro cálculo de r :
    1. calcule x̄, la media de todas las primeras coordenadas de los datos x i .
    2. calcule ȳ, la media de todas las segundas coordenadas de los datos y i .
    3. calcule s x la desviación estándar de la muestra de todas las primeras coordenadas de los datos x i .
    4. calcule s y la desviación estándar de la muestra de todas las segundas coordenadas de los datos y i .
  1. use la fórmula (z x ) i = ( x i - x̄) / s x y calcule un valor estandarizado para cada x i .
  2. use la fórmula (z y ) i = ( y i - ȳ) / s y y calcule un valor estandarizado para cada y i .
  3. multiplicar los valores estandarizados correspondientes: (z x ) i (z y ) i
  4. agregue los productos del último paso juntos.
  5. divide la suma del paso anterior por n - 1, donde n es el número total de puntos en nuestro conjunto de datos emparejados. El resultado de todo esto es el coeficiente de correlación r .

    Este proceso no es difícil y cada paso es bastante rutinario, pero la recopilación de todos estos pasos es bastante complicada. El cálculo de la desviación estándar es bastante tedioso por sí solo. pero el cálculo del coeficiente de correlación involucra no solo dos desviaciones estándar, sino una multitud de otras operaciones.

    un ejemplo

    Para ver exactamente cómo se obtiene el valor de r , veamos un ejemplo. de nuevo, es importante tener en cuenta que para aplicaciones prácticas nos gustaría usar nuestra calculadora o software estadístico para calcular r para nosotros.

    comenzamos con una lista de datos emparejados: (1, 1), (2, 3), (4, 5), (5,7). la media de los valores de x , la media de 1, 2, 4 y 5 es x̄ = 3. también tenemos que ȳ = 4. la desviación estándar de los valores de x es s x = 1.83 y s y = 2.58. La siguiente tabla resume los otros cálculos necesarios para r . la suma de los productos en la columna de la derecha es 2.969848. Como hay un total de cuatro puntos y 4 - 1 = 3, dividimos la suma de los productos por 3. Esto nos da un coeficiente de correlación de r = 2.969848 / 3 = 0.989949.

    tabla por ejemplo de cálculo de coeficiente de correlación

    Xyz xz yz x z y
    11-1.09544503-1.1618949581.272792057
    23-0.547722515-0.3872983190.212132009
    4 45 50.5477225150.3872983190.212132009
    5 57 71.095445031.1618949581.272792057


    Continuar Leyendo >

    Articulos relacionados a la energia