Cómo calcular el pH de un ácido débil

Cómo calcular el pH de un ácido débil

PH de un problema químico débil de ácido trabajado

calcular el ph de un ácido débil es un poco más complicado que determinar el ph de un ácido fuerte porque los ácidos débiles no se disocian completamente en el agua. Afortunadamente, la fórmula para calcular el ph es simple. esto es lo que haces

conclusiones clave: ph de un ácido débil

  • encontrar el ph de un ácido débil es un poco más complicado que encontrar el ph de un ácido fuerte porque el ácido no se disocia completamente en sus iones.
  • la ecuación de ph sigue siendo la misma (ph = -log [h + ]), pero debe usar la constante de disociación ácida (k a ) para encontrar [h + ].
  • Existen dos métodos principales para resolver la concentración de iones de hidrógeno. uno involucra la ecuación cuadrática. el otro supone que el ácido débil apenas se disocia en agua y se aproxima al ph. cuál elija depende de qué tan precisa necesita que sea la respuesta. para la tarea, use la ecuación cuadrática. para una estimación rápida en el laboratorio, use la aproximación.

ph de un problema de ácido débil

¿Cuál es el ph de una solución de ácido benzoico de 0.01 m?

dado: ácido benzoico k a = 6.5 x 10-5

solución

El ácido benzoico se disocia en agua como:

c 6 h 5 cooh → h + + c 6 h 5 coo -

La fórmula para k a es:

k a = [h + ] [b - ] / [hb]

donde:
[h + ] = concentración de iones h +
[b - ] = concentración de iones base conjugados
[hb] = concentración de moléculas de ácido no disociadas
para una reacción hb → h + + b -

ácido benzoico disocia uno h + ion para cada c 6 h 5 coo - ion, por lo [h + ] = [c 6 h 5 coo - ].

dejemos que x represente la concentración de h + que se disocia de hb, entonces [hb] = c - x donde c es la concentración inicial.

ingrese estos valores en la ecuación k a :

k a = x · x / (c -x)
k a = x² / (c - x)
(c - x) k a = x²
x² = ck a - xk a
x² + k a x - ck a = 0

resolver para x usando la ecuación cuadrática:

x = [-b ± (b² - 4ac) ½ ] / 2a

x = [-k a + (k a ² + 4ck a ) ½ ] / 2

** nota ** técnicamente, hay dos soluciones para x. Como x representa una concentración de iones en solución, el valor de x no puede ser negativo.

introduzca valores para k a y c:

k a = 6.5 x 10-5
c = 0.01 m

x = {-6.5 x 10-5 + [(6.5 x 10-5 ) ² + 4 (0.01) (6.5 x 10-5 )] ½ } / 2
x = (-6.5 x 10-5 + 1.6 x 10 - 3 ) / 2
x = (1.5 x 10-3 ) / 2
x = 7.7 x 10 -4

encontrar ph:

ph = -log [h + ]

ph = -log (x)
ph = -log (7.7 x 10 -4 )
ph = - (- 3.11)
ph = 3.11

responder

El ph de una solución de ácido benzoico de 0.01 m es 3.11.

solución: método rápido y sucio para encontrar ph ácido débil

la mayoría de los ácidos débiles apenas se disocian en solución. En esta solución, encontramos que el ácido solo se disocia 7,7 x 10 -4 m. la concentración original era 1 x 10 -2 o 770 veces más fuerte que la concentración de iones disociados .

los valores para c - x, entonces, estarían muy cerca de c para parecer inalterados. si sustituimos c por (c - x) en la ecuación k a ,

k a = x² / (c - x)
k a = x² / c

con esto, no hay necesidad de usar la ecuación cuadrática para resolver x:

x² = k a · c

x² = (6.5 x 10-5 ) (0.01)
x² = 6.5 x 10 -7
x = 8.06 x 10 -4

encontrar ph

ph = -log [h + ]

ph = -log (x)
ph = -log (8.06 x 10 -4 )
ph = - (- 3.09)
ph = 3.09

Tenga en cuenta que las dos respuestas son casi idénticas con solo 0.02 de diferencia. Observe también que la diferencia entre la x del primer método y la x del segundo método es de solo 0.000036 m. Para la mayoría de las situaciones de laboratorio, el segundo método es "suficientemente bueno" y mucho más simple.

verifique su trabajo antes de informar un valor. El pH de un ácido débil debe ser inferior a 7 (no neutral) y generalmente es menor que el valor de un ácido fuerte. Tenga en cuenta que hay excepciones. por ejemplo, el ph del ácido clorhídrico es 3.01 para una solución de 1 mm, mientras que el ph del ácido fluorhídrico también es bajo, con un valor de 3.27 para una solución de 1 mm.

fuentes

  • Bates, Roger g. (1973) determinación de ph: teoría y práctica . wiley
  • Covington, ak; bates, rg; Durst, Ra (1985). "definiciones de escalas de ph, valores de referencia estándar, medición de ph y terminología relacionada". aplicación pura Chem . 57 (3): 531–542. doi: 10.1351 / pac198557030531
  • housecroft, ce; Sharpe, AG (2004). Química inorgánica (2ª ed.). Prentice Hall. isbn 978-0130399137.
  • myers, rollie j. (2010) "cien años de ph". Revista de educación química . 87 (1): 30–32. doi: 10.1021 / ed800002c
  • miessler gl; tarr d .a. (1998) Química inorgánica ( 2ª ed.). Prentice Hall. isbn 0-13-841891-8.


Continuar Leyendo >

Articulos relacionados a la energia