El enlace de hidrógeno se produce entre un átomo de hidrógeno y un átomo electronegativo (p. Ej., Oxígeno, flúor, cloro). El enlace es más débil que un enlace iónico o un enlace covalente, pero más fuerte que las fuerzas de van der Waals (5 a 30 kJ / mol). Un enlace de hidrógeno se clasifica como un tipo de enlace químico débil.
Por qué se forman los enlaces de hidrógeno
La razón por la que se produce el enlace de hidrógeno es porque el electrón no se comparte de manera uniforme entre un átomo de hidrógeno y un átomo con carga negativa. El hidrógeno en un enlace todavía tiene solo un electrón, mientras que se necesitan dos electrones para un par de electrones estable. El resultado es que el átomo de hidrógeno tiene una carga positiva débil, por lo que permanece atraído por los átomos que aún tienen una carga negativa. Por esta razón, el enlace de hidrógeno no ocurre en moléculas con enlaces covalentes apolares. Cualquier compuesto con enlaces covalentes polares tiene el potencial de formar enlaces de hidrógeno.
Ejemplos de enlaces de hidrógeno
Los enlaces de hidrógeno se pueden formar dentro de una molécula o entre átomos en diferentes moléculas. Aunque no se requiere una molécula orgánica para la unión de hidrógeno, el fenómeno es extremadamente importante en los sistemas biológicos. Ejemplos de enlaces de hidrógeno incluyen:
- entre dos moléculas de agua
- sosteniendo dos cadenas de ADN juntas para formar una doble hélice
- fortalecimiento de polímeros (por ejemplo, unidad repetitiva que ayuda a cristalizar el nailon)
- formando estructuras secundarias en proteínas, como hélice alfa y hoja plegada beta
- entre las fibras de la tela, lo que puede provocar la formación de arrugas
- entre un antígeno y un anticuerpo
- entre una enzima y un sustrato
- unión de factores de transcripción al ADN
Enlace de hidrógeno y agua
Los enlaces de hidrógeno explican algunas cualidades importantes del agua. Aunque un enlace de hidrógeno es solo un 5% más fuerte que un enlace covalente, es suficiente para estabilizar las moléculas de agua.
- El enlace de hidrógeno hace que el agua permanezca líquida en un amplio rango de temperatura.
- Debido a que se necesita energía adicional para romper los enlaces de hidrógeno, el agua tiene un calor de vaporización inusualmente alto. El agua tiene un punto de ebullición mucho más alto que otros hidruros.
Hay muchas consecuencias importantes de los efectos de los enlaces de hidrógeno entre las moléculas de agua:
- Los enlaces de hidrógeno hacen que el hielo sea menos denso que el agua líquida, por lo que el hielo flota en el agua .
- El efecto de los enlaces de hidrógeno sobre el calor de vaporización ayuda a que la transpiración sea un medio eficaz para bajar la temperatura de los animales.
- El efecto sobre la capacidad calorífica significa que el agua protege contra cambios extremos de temperatura cerca de grandes masas de agua o ambientes húmedos. El agua ayuda a regular la temperatura a escala global.
Fuerza de los enlaces de hidrógeno
El enlace de hidrógeno es más significativo entre el hidrógeno y los átomos altamente electronegativos. La longitud del enlace químico depende de su fuerza, presión y temperatura. El ángulo de enlace depende de las especies químicas específicas involucradas en el enlace. La fuerza de los enlaces de hidrógeno varía de muy débil (1–2 kJ mol − 1) a muy fuerte (161.5 kJ mol − 1). Algunos ejemplos de entalpías en vapor son:
F − H…: F (161,5 kJ / mol o 38,6 kcal / mol) O − H…: N (29 kJ / mol o 6,9 kcal / mol) O − H…: O (21 kJ / mol o 5,0 kcal / mol ) N − H…: N (13 kJ / mol o 3,1 kcal / mol) N − H…: O (8 kJ / mol o 1,9 kcal / mol) HO − H…: OH 3 + (18 kJ / mol o 4,3 kcal / mol)
Referencias
Larson, JW; McMahon, TB (1984). "Iones de bihaluro y pseudobihaluro en fase gaseosa. Una determinación de resonancia de ciclotrón de iones de energías de enlace de hidrógeno en especies XHY- (X, Y = F, Cl, Br, CN)". Química inorgánica 23 (14): 2029-2033.
Emsley, J. (1980). "Enlaces de hidrógeno muy fuertes". Reseñas de la Sociedad Química 9 (1): 91-124. Omer Markovitch y Noam Agmon (2007). "Estructura y energética de las conchas de hidratación de hidronio". J. Phys. Chem. A 111 (12): 2253–2256.