ocasionalmente, en su estudio de álgebra y matemáticas de nivel superior, encontrará ecuaciones con soluciones irreales, por ejemplo, soluciones que contienen el número i, que es igual a sqrt (-1). en estos casos, cuando se le solicite resolver ecuaciones en el sistema de números reales, deberá descartar las soluciones irreales y proporcionar solo las soluciones de números reales. Una vez que entiendes el enfoque básico, estos problemas son relativamente simples.
factor la ecuación. por ejemplo, puede volver a escribir la ecuación 2x ^ 3 + 3x ^ 2 + 2x + 3 = 0 como x ^ 2 * (2x + 3) + 1 (2x + 3) = 0, luego as (x ^ 2 + 1) (2x + 3) = 0.
Obtener las raíces de la ecuación. cuando establece el primer factor, x ^ 2 + 1 igual a 0, encontrará x = + / - sqrt (-1), o +/- i. cuando establezca el otro factor, 2x + 3 igual a 0, descubrirá que x = -3 / 2.
Descartar las soluciones irreales. Aquí, solo te queda una solución: x = -3 / 2.