El valor absoluto es una función matemática que toma la versión positiva de cualquier número que se encuentre dentro de los signos de valor absoluto, que se dibujan como dos barras verticales. por ejemplo, el valor absoluto de -2 - escrito como | -2 | - es igual a 2. en contraste, las ecuaciones lineales describen la relación entre dos variables. por ejemplo, y = 2x +1 te dice que para calcular y para cualquier valor dado de x, doblas el valor de x y luego sumas 1.
dominio y rango
dominio y rango son términos matemáticos que describen todos los valores de entrada (x) posibles y todos los valores de salida (y) posibles, respectivamente, de una función. cualquier número puede ingresarse en un valor absoluto o en una ecuación lineal, por lo que los dominios de ambos incluyen todos los números reales. Debido a que los valores absolutos no pueden ser negativos, su valor más pequeño posible es cero. en contraste, las ecuaciones lineales pueden describir valores que son negativos, cero o positivos. como resultado, el rango de una función de valor absoluto es cero y todos los números positivos, mientras que el rango de una ecuación lineal es todos los números.
graficas
La gráfica de una función de valor absoluto se ve como una "v". la punta de la "v" se encuentra en el valor y mínimo de la función (a menos que haya un signo negativo delante de las barras de valor absoluto, en cuyo caso el gráfico es una "v" al revés con la punta en la el valor y máximo de la función). en contraste, la gráfica de una ecuación lineal es una línea recta descrita por la ecuación y = mx + b, donde m es la pendiente de la línea yb es el intercepto y (es decir, donde la línea cruza el eje y).
número de variables
Las ecuaciones de valor absoluto pueden contener dos variables, al igual que las ecuaciones lineales, pero también pueden contener una sola variable. por ejemplo, y = | 2x | + 1 es un gráfico de una ecuación de valor absoluto similar a la ecuación lineal y = 2x +1 en formato (aunque los gráficos se ven bastante diferentes, como se describió anteriormente). un ejemplo de una ecuación de valor absoluto con una sola variable es | x | = 5.
soluciones
Las ecuaciones lineales y las ecuaciones de valor absoluto de dos variables contienen dos variables y, por lo tanto, no se pueden resolver sin tener también una segunda ecuación. para las ecuaciones de valor absoluto con una variable, generalmente hay dos soluciones. en la ecuación de valor absoluto | x | = 5, las soluciones son 5 y -5, ya que el valor absoluto de cada uno de esos números es 5. un ejemplo más complicado es el siguiente: | 2x + 1 | -3 = 4. para resolver una ecuación como esta, primero reorganícela de modo que el valor absoluto esté solo en un lado del signo igual. en este caso, eso significa sumar 3 a ambos lados de la ecuación. esto produce | 2x + 1 | = 7. el siguiente paso es eliminar las barras de valor absoluto y establecer una versión igual al número original, 7, y la otra versión igual al valor negativo de eso, es decir, -7. por último, resuelve cada expresión por separado. asi que,