elegir el soporte perfecto para la locura de marzo es el sueño ideal para todos los que ponen lápiz a papel en un intento de predecir lo que sucederá en el torneo.
pero apostaríamos un buen dinero a que nunca has conocido a nadie que lo haya logrado. de hecho, sus propias selecciones probablemente caen manera corta de la clase de exactitud que usted esperaría la hora de poner en primer lugar el soporte juntos. Entonces, ¿por qué es tan difícil predecir el soporte perfectamente?
bueno, todo lo que se necesita es un vistazo al gran número alucinante que aparece cuando observas la probabilidad de una predicción perfecta para entender.
icymi: echa un vistazo a la guía de sciencing de la locura de marzo de 2019 , completa con estadísticas para ayudarte a completar un paréntesis ganador.
¿Qué tan probable es elegir el soporte perfecto? los basicos
olvidemos todas las complejidades que enturbian las aguas a la hora de predecir el ganador de un partido de baloncesto por ahora. Para completar el cálculo básico, todo lo que necesita hacer es asumir que tiene una probabilidad de uno en dos (es decir, 1/2) de elegir al equipo adecuado como el ganador de cualquier juego.
trabajando desde los 64 equipos finales que compiten, hay un total de 63 juegos en la locura de marzo.
Entonces, ¿cómo calculas la probabilidad de predecir más de un juego, verdad? dado que cada juego es un resultado independiente (es decir, el resultado de un juego de primera ronda no tiene relación con el resultado de ninguno de los otros, de la misma manera que el lado que aparece cuando lanzas una moneda no tiene relación con el lado que aparecerá si voltea otro), usa la regla del producto para probabilidades independientes.
Esto nos dice que las probabilidades combinadas para múltiples resultados independientes son simplemente el producto de las probabilidades individuales.
en símbolos, con p para probabilidad y subíndices para cada resultado individual:
puede usar esto para cualquier situación con resultados independientes. entonces, para dos juegos con una posibilidad equitativa de que cada equipo gane, la probabilidad p de elegir un ganador en ambos es:
agrega un tercer juego y se convierte en:
Como puede ver, la posibilidad se reduce muy rápidamente a medida que agrega juegos. de hecho, para múltiples selecciones donde cada una tiene la misma probabilidad, puede usar la fórmula más simple
donde n es el número de juegos. así que ahora podemos calcular las probabilidades de predecir los 63 juegos de locura de marzo sobre esta base, con n = 63:
en palabras, las probabilidades de que ocurra son de aproximadamente 9.2 quintillones a uno, equivalente a 9.2 billones de billones. este número es tan grande que es bastante difícil de imaginar: por ejemplo, es más de 400,000 veces más grande que la deuda nacional estadounidense. Si viajó tantos kilómetros, podría viajar desde el sol hasta Neptuno y regresar, más de mil millones de veces . es más probable que golpee cuatro hoyos en uno en una sola ronda de golf, o reciba tres rubores reales seguidos en un juego de póker.
elegir el soporte perfecto: cada vez más complicado
sin embargo, la estimación anterior trata cada juego como un lanzamiento de moneda, pero la mayoría de los juegos en la locura de marzo no serán así. por ejemplo, hay una probabilidad de 99/100 de que un no. 1 equipo avanzará a través de la primera ronda, y hay una probabilidad de 22/25 de que los tres mejores jugadores ganen el torneo.
El profesor Jay Bergen de Depaul hizo una mejor estimación basada en factores como este, y descubrió que elegir un parche perfecto es en realidad una probabilidad de 1 en 128 mil millones. Esto todavía es muy poco probable, pero reduce sustancialmente la estimación anterior.
¿Cuántos corchetes se necesitarían para obtener uno perfectamente correcto?
Con esta estimación actualizada, podemos comenzar a ver cuánto tiempo se esperaría para obtener un soporte perfecto. para cualquier probabilidad p , el número de intentos n que tomará en promedio lograr el resultado que está buscando viene dado por:
así que para obtener un seis en una tirada de un dado, p = 1/6, y así:
Esto significa que tomaría seis rollos en promedio antes de obtener un seis. para la posibilidad de 1 / 128,000,000,000 de obtener un soporte perfecto, tomaría:
Un enorme 128 mil millones de corchetes. Esto significa que si todos en los EE. UU. llenaran un paréntesis cada año, pasarían unos 390 años antes de que esperemos ver un paréntesis perfecto.
eso no debería desanimarlo de intentarlo, por supuesto, pero ahora tiene la excusa perfecta cuando no todo sale bien.
sintiendo el espíritu de locura de marcha? Eche un vistazo a nuestros consejos y trucos para completar un paréntesis y lea por qué es tan difícil predecir trastornos .