Métodos Para Factorizar Trinomios

Métodos Para Factorizar Trinomios

Si hay una asignatura de matemáticas que casi todos los estudiantes encuentran desafiante cuando la encuentran por primera vez, es el álgebra, particularmente el factoring de los trinomios. Existen varios métodos para factorizar los trinomios, y ninguno de ellos es lo que alguien llamaría "fácil". sin embargo, cada uno puede entenderse con estudio y práctica consistentes.

¿Qué es un trinomio?

Primero, debes saber qué es un polinomio. un polinomio es una ecuación algebraica que tiene términos, combinaciones de números y variables como 3x y 5y. Algunos ejemplos de polinomios son 2x + 3, 3xy - 4y y 3x + 4xy - 5y. Ese último ejemplo se llama trinomio. Un trinomio es un polinomio con tres términos.

máximo común divisor

El primer método, y posiblemente el más fácil, para factorizar trinomios es encontrar el mayor factor común: el mayor número, variable o término que los tres términos tienen en común. por ejemplo, con el trinomio 2x ^ 2 + 6x + 4, el número 2 es el único número que los tres términos tienen en común, por lo que al factorizar 2, obtienes 2 (x ^ 2 + 3x + 2). El trinomio dentro de los paréntesis puede ser factorizado aún más.

factorización de los trinomios cuadráticos

el trinomio x ^ 2 + 3x + 2 es un trinomio cuadrático porque tiene un término con un poder de dos. Para tener en cuenta este polinomio, debes conocer algunas reglas sobre los aspectos cuadráticos. Primero, los factores de los trinomios cuadráticos suelen ser dos binomios, como x + 2 o 2y - 3. segundo, el primer término del trinomio cuadrático es el producto de los primeros términos de los dos binomios. tercero, el último término del trinomio cuadrático es el producto de los últimos términos de los dos binomios. Cuarto, el coeficiente del término medio del trinomio cuadrático es la suma de los últimos términos de los dos binomios. quinto, si todos los signos en el trinomio cuadrático son positivos, todos los signos en ambos binomios son positivos.

ejemplo de factoring

para factorizar el trinomio cuadrático x ^ 2 + 3x + 2, comience con dos conjuntos de paréntesis, () (). haz el segundo paso escribiendo una x entre ambos paréntesis, (x) (x). La variable x ^ 2 es igual a x multiplicada por x, cumpliendo la primera regla. el tercer paso indica que el último término del trinomio es el producto de los últimos términos de ambos binomios, por lo que el último debe ser 1 y 2 o -1 y -2; ambos son iguales 2. el cuarto paso indica la mitad El coeficiente de término es la suma de los últimos términos de los dos binomios. solo 1 y 2 es igual a 3, por lo que la solución es (x + 1) (x + 2). También, la quinta regla se cumple también.

Casos especiales y otra información.

a veces es posible que tenga que volver a escribir el trinomio para facilitar la factorización. El trinomio 3x + 2y + 3xy es más fácil de resolver en el orden más lógico de 3x + 3xy + 2y, con todos los términos semejantes juntos. la reorganización del orden de los trinomios solo se puede utilizar si todos los signos en el trinomio son positivos. además, algunos trinomios no se pueden factorizar, como x ^ 2 + 4x +2. No hay forma de que este trinomio se pueda descomponer más.



Continuar Leyendo >

Articulos relacionados a la energia