¿Qué es un campo sigma?

Hay muchas ideas de la teoría de conjuntos que subyacen a la probabilidad. Una de esas ideas es la de un campo sigma. un campo sigma se refiere a la colección de subconjuntos de un espacio muestral que deberíamos usar para establecer una definición matemáticamente formal de probabilidad. Los conjuntos en el campo sigma constituyen los eventos de nuestro espacio muestral.

definición

La definición de un campo sigma requiere que tengamos un espacio muestral s junto con una colección de subconjuntos de s . Esta colección de subconjuntos es un campo sigma si se cumplen las siguientes condiciones:

  • si el subconjunto a está en el campo sigma, entonces también lo es su complemento a c .
  • Si una son infinitamente muchos subconjuntos del campo sigma, entonces la intersección y la unión de todos estos conjuntos también está en el campo sigma.

trascendencia

La definición implica que dos conjuntos particulares son parte de cada campo sigma. como a y a c están en el campo sigma, también lo está la intersección. Esta intersección es el conjunto vacío . por lo tanto, el conjunto vacío es parte de cada campo sigma.

el espacio muestral s debe ser también parte del campo sigma. La razón de esto es que la unión de una y un c deben estar en el campo sigma. esta unión es el espacio muestral s .

razonamiento

Hay un par de razones por las que esta colección particular de conjuntos es útil. primero, consideraremos por qué tanto el conjunto como su complemento deberían ser elementos del álgebra sigma. El complemento en la teoría de conjuntos es equivalente a la negación. Los elementos en el complemento de a son los elementos del conjunto universal que no son elementos de a . de esta manera, nos aseguramos de que si un evento es parte del espacio muestral, ese evento que no ocurre también se considera un evento en el espacio muestral.

también queremos que la unión y la intersección de una colección de conjuntos estén en el sigma-álgebra porque las uniones son útiles para modelar la palabra "o". El evento de que a o b ocurra está representado por la unión de a y b . Del mismo modo, utilizamos la intersección de representar la palabra “y”. el caso de que una y b se produce está representada por la intersección de los conjuntos una y b .

Es imposible intersectar físicamente un número infinito de conjuntos. sin embargo, podemos pensar en hacer esto como un límite de procesos finitos. Es por eso que también incluimos la intersección y unión de innumerables subconjuntos. para muchos espacios de muestra infinitos, necesitaríamos formar uniones e intersecciones infinitas.

ideas relacionadas

Un concepto relacionado con un campo sigma se denomina campo de subconjuntos. un campo de subconjuntos no requiere que innumerables uniones infinitas e intersecciones sean parte de él. en cambio, solo necesitamos contener uniones finitas e intersecciones en un campo de subconjuntos.



Continuar Leyendo >

Articulos relacionados a la energia