Cómo resolver un gradiente de una curva

Cómo resolver un gradiente de una curva

en matemáticas, se usa un gráfico lineal para representar los valores de una función. Las funciones de x que no contienen exponentes (como x = y o y = 2x + 1) son de naturaleza lineal, por lo que el gradiente (aumento a lo largo de la carrera) es fácil de calcular.

Las funciones de x que contienen exponentes (como y = 2x ^ 2 +1) son más difíciles de calcular, ya que el componente y de la línea puede curvarse en relación con el eje x.

    calcule los valores correspondientes del "eje y" de diez números del "eje x". por ejemplo, si y = x ^ 2, calcule los valores del eje y para x donde x es igual a -5, -4, -3, -2, -1, 0, 1, 2, 3 y 4. trace estos valores en el papel cuadriculado, donde el valor x es el eje horizontal y el valor y es el eje vertical.

    elija dos puntos ascendentes en el gráfico (como "x = 2" y "x = 3"). dibuja una línea recta de un punto a otro.

    cuente el número de líneas en el eje vertical entre los dos puntos y escriba este número como el numerador. cuente el número de líneas en el eje horizontal entre los dos puntos y escriba este número como el denominador. El gradiente es el numerador dividido por el denominador.

    consejos

    • Como la pendiente de una curva cambia constantemente, el gradiente variará entre dos puntos. como tal, cualquier medida de gradiente debe realizarse en un punto o entre un conjunto de dos puntos, en lugar de a lo largo de toda la curva.



Continuar Leyendo >

Articulos relacionados a la energia